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1. Executive summary 
 
This is the Final Technical Report on Contract F30602-00-2-0584. It presents highlights 
and details of the work performed and technical results achieved by the ‘Computation in 
the Wild: Moving Beyond the Metaphor’ project at the University of New Mexico, part 
of the DARPA TASK program.  
 
The project explored the hypothesis that networks of agent-based systems can be better 
understood, controlled, and developed when viewed from the perspective of living 
systems, treating the rich and dynamic network computer environment formed by diverse 
benign and malicious software collectively as a software ecosystem. 
 
The world of computing has greatly changed in the last decades. The marriage of the 
personal computer and the Internet has led to explosive growth in the contacts between 
separately administered computing resources, creating new opportunities and risks. 
Applets, agents, viruses, email attachments, and downloadable software routinely escape 
the confines of their original systems and spread through communications networks. Our 
computers are disabled by network-borne infections; our browsers crash due to 
unforeseen interactions between an applet and a language implementation; our 
application programs are broken by operating system upgrades. 
 
Such a world is a far cry from the carefully isolated, controlled, and managed computer 
systems of the past—this is computation in the wild. The connections between computer 
systems and living systems are superficially obvious and yet deep in their implications. 
This report presents an overview of the research objective and main research areas 
explored in the project work (Section 2.1), then provides additional details of each 
(Sections 3–7). Section 8 summarizes the project and Section 9 provides a list of 
publications supported by the project. 
 

1.1. Project Objective 
 
Taking seriously the analogy between computer systems and living systems encourages 
rethinking many aspects of current computing practice, ranging from operating system 
design to communications mechanisms to computer security. To that end, the project 
explored several design strategies taken from biology, seeking to construct software that 
can better survive in the wild, and developing a better understanding of the current and 
emerging software ecosystems. 
 
Biological principles stand to unify many scattered current research efforts addressing 
robust operation, survivability and security, while also suggesting new avenues for 
research. In addition, as the size and scope of software systems continues to grow, and 
global computer networks continue to expand, tools and methodologies from biological 
research will be increasingly relevant for understanding and monitoring the results. 
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Overall, the project’s objective was to exploit the analogy between agent-based systems 
and living systems, using the analogy to understand and improve agent security, 
adaptability, and evolvability in the face of dynamic and unpredictable environments. 
This objective addressed the TASK technical topic areas of agent systems modeling and 
well-founded agent creation tools. 
 

1.2. Research focus areas 
 
The investigators conducted research on several related projects to demonstrate concrete 
examples and to develop theoretical models of the appealing metaphor of biology in 
computation. The projects included: Homeostatic Operating Systems, Software Genetics, 
Modeling Agent Behavior, and Information Immune Systems. In the original proposal, 
one optional project was proposed (depending on how long the project funding lasted), 
based on the idea of automated diversity. The diversity project was conducted with partial 
funding from F30602-00-2-0584, as well as partial support from a completed seedling 
project F30602-02-1-0146 and NSF grant CCR-0311686 which began Aug. 2003. 
 
The following five sections provide details on the results of each of these efforts; here we 
provide just the ‘high concepts’ of each of the major research areas: 
 

• Homeostatic Operating Systems: Augmenting a computer operating system with 
mechanisms similar in spirit to those of biological systems, which maintain 
homeostasis, by coupling system-call based process monitoring to feedback 
mechanisms. 
 
• Software Genetics: Applying quantitative methods from biology to the study of the 
current software ecosystem, discovering scaling relations and automated methods for 
improving software modularity. 
 
• Modeling Agent Behavior: Studying the behavior of Java Virtual Machines 
running agent implementations to extract regularities and detect anomalies. 
 
• Information Immune Systems: Developing new applications in collaborative 
design, extended an existing prototype TCP-based intrusion-detection system based 
on immunological principles, and developing a formal framework for anomaly 
detection. 
 
• Automated Diversity: Developing methods by which software can automatically 
be made more diverse, and thus more robust to attack, with a particular emphasis  
on methods that do not disrupt existing correct program semantics, leading to the 
possibility of ‘drop in’ technologies to improve security and robustness. 
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1.3. Highlights of Research Results 
 

1.3.1. The homeostasis project 
 
The homeostasis project augmented a computer operating system with mechanisms 
similar in spirit to those of biological systems, which maintain homeostasis, by coupling 
system-call based process monitoring to feedback mechanisms. Under this project, 
software was developed that detects when programs begin behaving anomalously and 
tries to limit damage by delaying subsequent system calls for the anomalous process. The 
more anomalous the process behaves the more aggressively it is delayed. A modified 
Linux kernel was produced and extensive testing performed that showed the system could 
detect and either delay or sometimes completely disrupt a variety of attacks. 
 

1.3.2. The software genetics project 
 
The software genetics project sought to understand and improve the evolvability of 
software systems. This includes studying well-chosen small abstract problems designed 
to isolate key factors related to evolvability, as well as applying the resulting ideas and 
insights to concrete software systems. On the abstract side, one key result showed how 
computer code problem can evolve automatically to be well-modularized, in the face  
of an environment that changes in a partially structured manner. On the concrete side, 
evolvability studies of large Java systems developed metrics for measuring code 
evolvability and demonstrated prototypes algorithms for automatically remodularizing 
existing code based on the code evolutionary history. 
 

1.3.3. The agent modeling project 
 
The agent modeling project instrumented Java Virtual Machines to record the dynamical 
information exhibited by executing Java programs. By exploring patterns of method 
invocations, we have discovered highly regular behaviors that can in some cases be 
leveraged for agent security and anomaly detection. 
 
In addition, studies of method invocation sequences and object lifetimes trying to 
understand their regularities and anomalies lead to the surprisingly revelation that object 
lifetimes can often be predicted exactly by the calling context of their creation, a result 
which may have application in future garbage collection research as well as security and 
anomaly detection. 
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1.3.4. The information immune systems project 
 
The information immune systems project builds on an earlier intrusion detection system 
(LISYS) which incorporates a significant amount of textbook immunology into a 
computational framework. Key developments in this area included conducting new 
experiments to confirm our earlier results and compare the approach with other machine 
learning algorithms, developing a stronger theoretical understanding of its behavior, and 
exploring an automated response component. 
 

1.3.5.      Automated diversity project 
 
The diversity project investigates methods by which software can be made more diverse. 
Our initial focus was on using diversity to improve security, and that is where our key 
results are for this project funding, but we also believe that in the long run, other benefits 
such as correctness, robustness, efficiency and so forth, will be equally important. 
 
More details about the results obtained in each of these areas are provided in the 
following sections. 
 
2. Process Homeostasis (pH) 
 
The project developed prototype software (pH) that detects when programs begin 
behaving anomalously and tries to limit damage by delaying subsequent system calls for 
the anomalous process. The more anomalously the process behaves the more aggressively 
it is delayed. The software runs under Linux, monitoring all executing processes in real 
time at the system-call level. The software consists of a modified linux kernel and a user 
interface (pH-mon).  It is available under GPL licensing from 
http://www.cs.unm.edu/soma/pH/. 
 
This pH prototype was ported to a mobile robot through the Sandia Laboratories LDRD 
program (not directly funded by this DARPA contract). 
 
pH monitors all the system calls (without arguments) made by an executing program on a 
per-process basis. That is, each time a process is invoked, we begin a new trace, logging 
all the system calls for that process. Thus, for every process the trace consists of an 
ordered list (a time-series) of the system calls it made during its execution. For 
commonly executed programs, especially those that run with privilege, we collect such 
traces over many invocations of the program, when it is behaving normally. We then use 
the collection of all such traces (for one program) to develop an empirical model of its 
normal behavior. The model that results from this training phase is imperfect because it 
captures only the normal activity that occurred during our observation period. It is, of 
course, possible that undesirable behavior occurs during the training phase and is 
incorporated into the model, resulting in false negatives. 
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Given a collection of system call traces, how do we use them to construct a model?  This 
is an active area of research in the field of machine learning, and there are literally 
hundreds of good methods available to choose from, including hidden Markov models, 
decision trees, neural networks, and a variety of methods based on deterministic finite 
automata (DFAs). We chose the simplest method we could think of within the following 
constraints. First, the method must be suitable for on-line training and testing. That is, we 
must be able to construct the model “on the fly” in one pass over the data, and both 
training and testing must be efficient enough to be performed in real-time.  Next, the 
method must be suitable for large alphabet sizes.  Our alphabet consists of all the 
different system calls—typically about 200 for UNIX systems. Finally, the method must 
create models that are sensitive to common forms of intrusion. Traces of intrusions are 
often 99% the same as normal traces, with very small, temporally clumped deviations 
from normal behavior. In the following, we describe a simple method, which we call 
“time-delay embedding” and others have called “sequence-based detection”  
 
We define normal behavior in terms of short n-grams of system calls. Conceptually, we 
define a small fixed size window and “slide” it over each trace, recording which calls 
precede the current call within the sliding window. The current call and a call at a fixed 
preceding window position form a “pair,” with the contents of a window of length x 
being represented by x − 1 pairs. The collection of unique pairs over all the traces for a 
single program constitutes our model of normal behavior for the program. 
 
This table can be stored using a fixed-size bit array. If |S| is the size of the alphabet 
(number of different possible system calls) and w is the window size, then we can store 
the complete model in a bit array of size: |S|×|S|×(w−1). Because w is small (6 is our 
standard default), our current implementation uses a 200 × 200 byte array, with masks to 
access the individual bits. 
 
At testing time, system call pairs from test traces are compared against those in the 
normal profile. Any system call pair (the current call and a preceding call within the 
current window) not present in the normal profile is called a mismatch. Any individual 
mismatch could indicate anomalous behavior (a true positive), or it could be a sequence 
that was not included in the normal training data (a false positive). The current system 
call is defined as anomalous if there are any mismatches within its window. 
 
pH responds to anomalies by delaying system call execution. The amount of delay is an 
exponential function of the current LFC, regardless of whether the current call is 
anomalous or not. The unscaled delay for a system call is d = 2LFC. The effective delay 
for a system call is d × delay_factor, where delay_factor is another user-defined 
parameter. Note that delays may be disabled by setting delay_factor to 0. If the LFC ever 
exceeds the tolerization_limit parameter (which is 12 for the experiments described 
below), the training array is reset, preventing truly anomalous behavior from being 
incorporated into the testing array. 
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Because pH monitors process behavior based on the executable that is currently running, 
the execve system call causes a new profile to be loaded. Thus, if an attacker were able to 
subvert a process and cause it to make an execve call, pH might be tricked into treating 
the current process as normal, based on the data for the newly-loaded executable. To 
avoid this possibility the maximum LFC count (maxLFC) for a process is recorded. If 
maxLFC exceeds the abort execve threshold, then all execve’s are aborted for the 
anomalous process. 
 
Once the software was developed, extensive field tests of pH were conducted in a variety 
of production environments (including the UNMCS departmental web and mail server, 
and two desktop computers), an analysis was conducted to understand how pH detects 
anomalies (by detecting the use of novel code paths), and pH’s effectiveness was studied 
as a system-administration tool. 
 
For example, we tested pH’s ability to stop intrusions on one common method of 
intrusion—the trojan program. To do this, we patched the current Debian release of the 
program login with a common trojan and installed it as the default login program. This 
trojan allows a user to gain root access via a back door, activated simply by entering a 
special username which isn’t listed in the password file. We then performed several 
normal logins, exercising common variations such as mistyped passwords and login 
names, logins as root and as a regular user, and timeout after 60 seconds. These 
exemplars of normal activity produced a profile consisting of 342 unique lookahead pairs 
out of a total of 12180 system calls (across all the exemplar logins). This profile was 
manually installed as the testing database. Subsequent normal logins did not produce any 
anomalies. We then tested the pH response to login’s backdoor in the following way. 
First, we activated the back door with delay_factor set to 0 (no automated response). pH 
reported 25 anomalies and allowed the login to succeed. Even though the automated 
response component was turned off, the 25 anomalies caused an unscaled delay larger 
than the 10,000 tolerization_limit; thus, the training array for login was reset. We then 
set delay_factor to 2, our default value for automated response. With automated response 
turned on, we re-executed the back door, and this caused a total delay of 43.6 seconds 
over the course of 12 system calls). This delay was long enough to cause the login 
program to timeout, thus defeating the attempted security compromise. To our 
knowledge, this was the first time that an anomaly intrusion detection system had been 
demonstrated to respond quickly enough to stop a bona-fide attack in real-time. 
 
The results of this work are documented in the following references [21, 22]. 
 
3. Software Genetics 
 
Computation in the wild views the relationships between evolved biological systems and 
manufactured computing systems as much more than happenstance or metaphor. The 
software genetics project obtained new results working from both sides of that 
connection. 
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For example, considering the problem of ‘code bloat’ in genetic programming in light of 
various biological mutation mechanisms, we developed a new mechanism for genetic 
programming mutation that significantly reduces evolved GP tree sizes [25]. 
 
Similarly, developing abstract mathematical models of evolvability, based on biological 
inspirations, allowed us to explore simple models with adaptive evolvability, to compare 
them to traditional models which most often (without even noticing) employ fixed 
evolvabilities, and to demonstrate concrete cases where adaptive evolvability 
significantly outperforms a more traditional fixed-evolvability model [5]. 
As a principle focus, the software genetics project developed a new framework 
for investigating connections between ‘evolvability’ in the sense of biological 
genetics and adaptive systems on the one hand, and ‘evolvability’ in the sense 
of software engineering and software maintenance on the other hand. 

3.1. Evolving modular code 
 
Software forms a bridge between a useful function or desired purpose and a physical 
computing system that is in principle capable of performing the function—but that is  
only its most obvious job, and not its most challenging one. Of all the myriad possible 
ways that any given function could be realized by a physical system, high-quality 
software must be organized in such a way that, insofar as it is possible, likely future 
changes in needs or means can be accommodated at low cost, without largely or entirely 
discarding the software and starting over. 
 
Building on the framework of “Automatically-Defined Functions” in genetic 
programming, we show circumstances under simple, well-modularized code to solve a 
problem can evolve. Instead of the ‘rats nest’ of impenetrable code typical of automatic 
code evolution systems, we identified a mechanism whereby evolvability can itself 
evolve, even though there is no direct ‘fitness’ advantage for the well-structured code, in 
terms of the its ability to solve the current problem. 
 
We observed this evolution of evolvability in experiments using genetic programming to 
solve a symbolic regression problem that varies in a partially unpredictable manner. 
When ADFs are part of a tree’s architecture, then not only do average populations 
recover from periodic changes in the fitness function, but that recovery rate itself 
increases over time, as the trees adopt modular software designs more suited to the 
changing requirements of their environment. 
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Figure 1: A hand-constructed sample genetic program employing an automatically-
defined function (ADF) to represent a modularized sub-expression. See text. 
 
The details of this research are described in [24]. 
 
Figure 1 illustrates a sample ADF-based genetic program, in that case reusing 
the ADF three times to compute the expression  
 

y = (x − 1) * (x − 1) + (x −1). 
 We considered a ‘problem environment’ in which the task is to evolve 
programs that can compute 
 

y = Asin(Ax) 
 
where A is a constant—but with a twist: The value of A changes periodically over 
evolutionary time. Our hope was that ‘properly modularized’ code—that isolated the 
computation of A inside the ADF—might in the long run out-compete poorer 
‘monolithic’ code solutions that perform the computation of A twice, thus requiring 
multiple synchronized mutations to adjust when the value of A eventually changes. 
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Figure 2: Fraction of runs, at each epoch, that contained correct solutions (hits = 
200). Also plotted is the percent of ADF runs that contains a minimal (RPB size 6) 
correct solution. 
 
Figure 2, drawn from [24] (see also [23] for more details), illustrates typical results we 
obtained. The horizontal axis is time (measured in 5 generation ‘epochs’) and the vertical 
axis is the fraction of test runs that achieved some particular criterion at each time 
period—note that since the environmental function changes each epoch when a new 
value of A is drawn, the fitness of any given individual or population is not constant. The 
upper curve shows that after the first 80 epochs or so, typically over 60% of runs using 
ADF’s were able to find a correct solution within each epoch. By contrast (bottom curve) 
the ‘monolithic code’ approach typically only generated correct solutions approximately 
10% of the time, throughout the epochs. 
 

3.2. Analyzing and improving real code 
 
Software engineering experience has developed many best practices about how to 
produce robust, maintainable, high-quality software, but much of it is essentially ‘folk 
wisdom’, unsupported by any strong theory of software quality. Many traditional 
software engineering metrics, such as lines of code or other complexity metrics, are 
measured as static properties of a code base, and can therefore only hypothetically and 
indirectly—if at all—capture primary qualities like code maintainability over time.  
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As software construction tools and techniques have developed, however, and particularly 
with the rise of open source software and software development systems, it is now easier 
than ever to analyze the actual evolution of real software systems over significant periods 
of time. Historical analysis of actual patterns of code evolution support the development 
of dynamic software quality metrics—defined explicitly in terms of time and code 
change—and can provide a degree of ‘ground truth’ to support and refine software 
engineering intuition and best practices. 
 
The ‘real software’ side of our software genetics project did just that, focusing on 
dynamic metrics of evolvability in the sense of software engineering and maintenance. A 
number of metrics were explored—see [23] for details—here we present an overview of 
two of them. 
 
We developed tools to acquire and analyze codebase evolutionary data from open source 
code repositories, allowing us to seek out the patterns of change that actually occur in the 
development of real software, independent of any a priori theory about how software 
should be expected to change over time. For example, Figure 3, taken from [23], depicts 
approximately two years of the evolutionary history of the code base for the Jikes 
Research Virtual Machine (RVM), an experimental Java Virtual Machine 
implementation. Changes large and small can be seen, as well as a large range of sizes of 
coordinated change—changes happening in multiple files at (more or less nearly) the 
same time. 
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3.2.1. Metrics on language features: Likelihood and impact 
 
One way we analyzed the resulting data was in terms of two new software evolvability 
metrics—“impact” and “likelihood”—aimed at measuring precisely those patterns of 
coordinated change that occurred during the development of software systems. The 
metrics were used to make predictions about software changes, predicting that most 
changes will occur in low impact features, and that high impact features will change  
only rarely, roughly corresponding to major transitions in the evolutionary history of 
 the system. 
 
The impact metric was used to analyze three Java-based software systems—the Jikes  
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Figure 4: Scatterplot of impact vs. likelihood for various element types in the three 
projects, on a log-log axis. The small-dash lines represent contours of constant work. 
The solid line is a least-squares linear regression on the data points. The second 
column of graphs shows the movement of points from the first half of the project 
history to the second half. 
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RVM as mentioned above, the Jakarta web server applet, and the NetBeans IDE; see 
Figure 4. The analysis suggested the existence of a power law relating impact and the 
likelihood of a feature changing. Earlier and later software versions were also compared 
to see how the values of the impact and likelihood metrics change over evolutionary time: 
Code features in Jikes tend to evolve toward the more ‘chronic’ condition (with frequent 
but low-impact changes), while in the other two projects, the software evolved toward the 
‘acute’ rare-but-high-impact end of the spectrum. 
 

3.2.2. Metrics on modularity: Breadth and weight 
 
Modularity is probably the single most important factor in software quality recognized by 
software engineering. In addition to examining software change at the level of individual 
features, we also studied the data at the level of changes in entire files—focusing in 
particular on changes occurring in multiple files within modules nearly simultaneously. 
By hypothesis, one would imagine that any particular change needed in well-modularized 
code would tend to be concentrated within one or perhaps a few modules, rather than 
requiring changes all over the code base—but how often is that really true? 
 
At the file and module level we developed a pair of metrics called “breadth” and 
“weight” to measure the efficiency of evolutionary change: Breadth measures how many 
modules are affected by a given change, and weight measures the aggregate size of those 
affected modules, in terms of number of files. 
 
Breadth and weight trade-off against each other: Breadth is minimized by putting all files 
in one module, but that maximizes the weight of every change, while putting each file in 
its own module accomplishes the reverse.  
Given a modularity M, a change history C, and some chosen value for indicating the 
relative importance of breadth versus weight, then 
 

badness(M,C) =  · breadth(M,C) + weight(M,C) 
 

gives a simple scalar measure of the ‘true’ quality of a given modularization, according to 
the observed change history. 
 
With such a fitness function in hand, we went even further: Beyond just measuring the 
badness of human-designed modularizations, we developed algorithms for automatically 
generating modularizations to minimize the badness measure, without human 
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Figure 5: Breadth and Weight scores for two automatic modularization algorithms 
(Clustering and FastModPartition), for various tradeoff values between breadth and 
weight. The plus sign marks the score of the current package structure. 
 

 
 
Figure 6: Refactoring recommended by FastModPartition to best handle multiple 
architectures in Jikes RVM while minimizing breadth and weight. 
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intervention beyond the choice of . As shown in Figure 5, with certain   values the 
algorithm called ‘FastModPartition’ actually found modularizations that bettered the 
human-designed modularization on both breadth and weight metrics simultaneously, 
considering the actual evolutionary history of the Jikes project. 
 
Although the automatically discovered modularizations are often nonsensical—because 
many files rarely if ever changed over the period of data collection, and so looked equally 
good no matter where they were placed—we also found that sometimes, the automatic 
discoveries were highly plausible from the point of view of traditional software 
engineering. For example, in the Jikes project, the automatic method suggested 
refactoring part of the code base to be organized according to function first, rather than 
architecture, as was done—as suggested by Figure 6. 
 
4. Modeling Agent Behavior 
 
Several methods were developed for measuring object lifetimes and patterns of method 
invocations in Java Virtual Machines. The instrumentation tools were used to study 
anomaly detection in Java programs in two quite different contexts: (1) for garbage 
collection, and (2) agent-based anomaly detection. A method for measuring zero lifetime 
objects in Java was developed, and it was used to discover that zero lifetime objects are 
highly predictable (that is, running a Java program once and using the observed object 
lifetimes as a training set produces good results on subsequent test-set runs). This 
predictability has potential application for garbage collection systems. An extensive 
series of experiments on this application was conducted and a preliminary design for a 
new “Death-Oriented Garbage Collector” was developed. 
 
Modern language run-time environments provide a wealth of profiling mechanisms to 
investigate the state of an application. In virtual machine (VM) environments such as C# 
and Java, profiling is an important part of the (JIT) compilation process. One goal of 
object lifetime prediction is to improve performance by providing run-time advice to the 
memory allocation subsystem about an object’s likely lifetime at the time it is allocated. 
We accomplished this by constructing an object lifetime predictor, which based its 
predictions on information available at allocation time. This includes the context of the 
allocation request, namely the dynamic sequence of method calls that led to the request, 
and the actual type of the object being allocated. We refer to this information as the 
allocation site; if the observed lifetimes of all objects with the same allocation site are 
identical, then the predictor should predict that value at run-time for all objects allocated 
at the site. 
 
In the project, we showed how information available to the VM can be leveraged to 
improve object lifetime prediction and how that ability might be exploited by the JIT 
compiler and collection system. First we demonstrated that there is a significant 
correlation between the state of the stack at an allocation point and the allocated object’s 
lifetime. Then, we showed how this information can be used to predict object lifetimes at 
the time they are allocated. We then showed that a significant proportion of objects have 
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zero lifetime (a surprising result). We also simulated the behavior of a hypothetical 
hybrid GC (the death-oriented collector) that uses our prediction method, showing the 
best-case behavior of such a system. 
 
In a second application of these techniques, we developed a technique for automatically 
enforcing the principle of least privilege in Java programs. Complex enterprise and 
server-level applications are often written in Java because of its reputation for security. 
Java allows for extremely precise descriptions of security policy. The ability to express 
fine-grained policies makes it difficult to determine the correct policy with respect to the 
principle of least privilege. Our method automatically learned the minimum security 
policy by observing an executing program and recording the inferred policy in the 
standard Java policy language. We call this technique dynamic sandboxing. We showed 
that the minimum policy stops Java exploits and that learning the policy does not cripple 
performance, allowing realistic runs during training.  
 
Our instrumentation methods were also applied to a large-scale simulation of UAVs, 
developed by Metron. Various kinds of anomalies were tested in the simulation, ranging 
from simulated sensor faults in the simulated UAVs to bugs in the simulation code itself. 
The instrumentation tools were extended for this application, to support monitoring the 
simulation on a per-thread basis. The analysis showed that per-thread monitoring 
improved anomaly-detection results dramatically for this application. With per-thread 
monitoring, the vast majority of the tested anomalies were detected. 
 
The anomaly detection technology was demonstrated at the TASK Demo in Washington 
DC in 2004. Results from the project are documented in the following references [17, 20, 
17, 19, 18]. 

 
5. Information Immune Systems 
 
This project extended work on an earlier system (LISYS) that incorporates a significant 
amount of textbook immunology into a computational framework. LISYS is an artificial 
immune system framework that contains several interesting adaptive mechanisms. 
However, it was originally developed for the problem of network intrusion detection at 
the TCP syn packet level. Experiments were conducted to confirm earlier published 
results and to compare LISYS to other machine learning algorithms. Theoretical analysis 
was conducted leading to deeper understanding of LISYS’ behavior, and several new 
applications beyond computer security were explored. Results from this project are 
summarized in three areas, Experiments, Theory, and New Applications. 
 

5.1. Experiments 
 
The various LISYS mechanisms were characterized in terms of their machine- 
learning counterparts, and a series of experiments was conducted, each of which isolated 
a different LISYS mechanism. The experiments were conducted on a new data set, which 
features one-class learning, concept drift and on-line learning. The experiments studied in 
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detail how LISYS achieves success on this data set and studied the potential value of 
LISYS’ mechanisms in a broader machine learning context. With minimal parameter 
tuning, LISYS detected approximately 644 out of 5 total attacks) while incurring on aver- 
age only 5 false positives per day (out of 6,200 total packets per day) over a 32-day 
period. The experiments confirmed and helped elucidate Hofmeyr’s original results on 
the network immune system. 
 
LISYS performance was compared to several popular machine-learning methods, 
including k-nearest neighbors, expectation maximization, support vector machines and 
compression neural networks. The experiments confirmed that concept drift is a 
significant issue in network intrusion detection. Two important subparts of the concept-
drift problem are: adapting to changes in normal behavior and training in the presence of 
attacks. The empirical results showed that, for the new intrusion-detection data set, 
concept drift has substantial impact on performance. Failure to adapt to a non-stationary 
distribution of “normal” data leads to increasingly inaccurate classifications and degrades 
IDS performance. Two important factors were identified for tracking concept drift in the 
anomaly-detection domain: updating the model of the normal class and avoiding 
incorporating hostile data into the model. For the first factor, straightforward methods of 
handling drift (sliding windows in k-NN and continual training in the CNN) perform 
well, largely maintaining both false positive and true positive rates. Both suffer, however, 
when subjected to hostile data intermixed with normal during online learning. Any level 
of false negative error (falsely labeling anomalies as normal) leads to incorporating 
hostile data into the model of normalcy and degraded true positive rates. The LISYS 
algorithms were much more resistant to this problem than the simpler concept drift 
learners. These results led to the hypothesis that LISYS’ use of negative detection and 
activation thresholds are the most important factors in its performance under the hostile 
training scenario. These experiments revealed that the adaptive immune system has 
important adaptations for learning non-stationary concepts. 
 
LISYS performed well on a new more-challenging data set with minimal tuning. The 
experiments showed that (nearly) every component positively affects performance. Many 
of the components that help LISYS perform well in the intrusion-detection domain may 
prove valuable in other challenging ML domains which involve one-class learning, 
concept-drift, and/or on-line learning. These components include: co-stimulation and 
memory detectors, rolling coverage; activation thresholds and sensitivity levels, r-
contiguous bits matching, and secondary representations. Co-stimulation is a mechanism 
for incorporating feedback from an expert teacher during operation and memory detectors 
are a mechanism for storing this feedback for future use. Together, they enhance LISYS’ 
capacity for on-line learning and extend LISYS beyond a strict one-class learning 
framework. Rolling coverage handles concept drift. In contrast with fixed- and adaptive-
window schemes, the probabilistic deletion and regeneration of detectors produces a 
window which is probabilistic, decaying gradually with time. Coupled with co-
stimulation, the window size is also adaptive. Activation thresholds and sensitivity levels 
bias the system against occasional or sporadic alarms and towards high-frequency bursts 
of anomalies. The principal role of these mechanisms is to reduce false positives. Similar 
mechanisms may be useful in other anomaly-detection domains where some stream of 
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data is being monitored, particularly when false positives are costly. The r-contiguous 
bits matching rule was found to be more powerful than Hamming distance-based 
matching in LISYS. 
 
This work is documented in the following papers [2, 1, 16, 15]. 
 

5.2. Theory 
 
Mathematical characterizations were developed that account for the behavior of the 
various intrusion-detection systems based on the immune system metaphor. The work 
specifically addressed the question of when negative detection is an advantage over 
positive detection, when r-contiguous bits (rcb) matching rule is a good choice and why 
and how the immune-based methods relate to the more traditional statistical approaches 
to similar problems. 
 
Specific results include: 
 

• r-chunks matching rule: A simplification of the original immune-inspired matching 
rule known as “r-contiguous bits” (rcb) was developed. The new match rule is called 
“r-chunks.” r-chunks has four main advantages over rcb: (1) it is easier to analyze 
mathematically, (2) fewer detectors are required to provide the same degree of 
coverage, (3) it results in fewer “holes” in coverage, and (4) it has natural 
computational efficiencies for the case of very long detectors. 
 
• The expected number of positive detectors to provide maximal coverage under 
rchunks matching is: 

(Ep(|D|) = (l − r + 1)(2r − 2 r (1 − 2− r)
|S| 

)) 
 where Ep(|D|) is the expected number of positive detectors, l is the length of the 
strings, r is the size of the window, and |S| is the number of strings in self. 
 
• The expected number of negative detectors to provide maximal coverage under 
 r-chunks matching is: 

En(|D|) = (l−r+1)+2 r (1−2− r) |S|
. 

 With these two formulae one can compute how large the self set needs to be before 
negative detection begins to pay off independently of the need for distributed 
detection (which is an advantage of negative detection regardless of the self set size). 
This calculation depends on l and r. 
 
• Because the windows are overlapping, the formulae above have some redundancy 
in them. The size of a minimum set of negative detectors was calculated by 
eliminating the redundancies caused by overlaps:  

Emin(|D|) = 2 r −Er+(l−r)(Er−2(Er−Er−1)) where 2(Er−Er−1) 
 is the number of patterns that differ only in their last bit (the redundancy).  Er is the 
expected number of distinct patterns in a window of size r bits. 
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• Generalization and the crossover closure: Under r-chunks, what strings are 
considered to crossover? That is, what is the generalization induced by the r-chunks 
matching rule? Two windows wi = vi..vi+r−1 and wi+1 = ui+1..ui+r are defined to 
“crossover” if they agree in their specified bits. The set of all crossover strings for a 
fixed value of r is the crossover closure (CC(r)). The generalization of a set S under 
r-chunks matching is exactly CC(r). The generalization of S under rcb is CC(r) plus 
some other strings. Thus, the generalization of S under r-chunks is smaller than 
under rcb, and can be controlled through the parameter r. 
 
• Expected size of CC(r): How large is the generalization induced by r-chunks 
matching? This can be calculated by solving a recurrence. The final formula is quite 
complicated (and appears in the referenced papers). The formula was verified with 
simulation. 
 
• Permutations: Permutations reduce the size of the generalization, potentially 
reducing false negatives. For rcb, one can study how many permutations are needed 
to provide the maximal reduction in the size of the generalization. As a preliminary 
result, the number is estimated to be about l. Through the experiments described 
above it was discovered that some permutations are much more effective than others. 

 
A formal connection between partial-match detection (the rcb rule and its relatives) and 
relational database theory was developed, and subsequently the consequences of this 
connection have been explored, focusing on the possibility that the immune-system 
framework could be used to enhance the privacy of relational databases under the 
constraints of homeland security. This line of work is being continued under NSF ITR 
grant CCR-0331580. 
 
These results are documented in detail in the following references [11, 12, 13, 10]. 
 

5.3. New Applications 
 
Several potential new application areas were explored for a LYSIS style artificial 
immune system. 
 
A demonstration application of immune-inspired collaborative filtering was developed, 
known as Adaptive Radio. Adaptive Radio is a Linux-based music broadcaster that uses 
the negative-detection principle of the immune system. It is available under GPL 
licensing from: http://www.cs.unm.edu/immsec. 
 
Matt Williamson’s work on virus throttling was extended to a more general model that 
can be used to control to all TCP connections in a network. This more general throttling 
approach was combined with a modified form of LISYS to create an adaptive desktop 
firewall, called RIOT. This work is documented in [8, 7, 9, 6]. 
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6. Automated Diversity 
 
This project deliberately introduced diversity into computers—even those running 
identical software—so that successful attacks on one computer will not necessarily work 
on others. Diversity is one aspect of the kinds of adaptive and robust methods used 
routinely in biological systems. 
 
The project explored three potential diversity mechanisms: Dynamic translation of 
machine code (to defend against code-injection), randomizing the system-call interface 
(to defend against code-injection attacks), and evolving diverse implementations of TCP 
resource management policies (to defend against denial-of-service attacks). The primary 
focus, however, was on dynamic translation. Dynamic translation of machine code is 
used to achieve randomized instruction set emulation, which thwarts malicious code 
injection attacks by making injected code appear random and thus illegal to the native 
processor. 
 
The project developed a prototype implementation of machine code randomization, 
called RISE (randomized instruction set emulation). RISE is available under GPL 
licensing from: http://www.cs.unm.edu/gbarrante. RISE’s ability to stop attacks was 
tested using the Core Impact testing software. Experiments were conducted, both to test 
the effectiveness of RISE at stopping attacks and to test the safety of executing random 
sequences of instructions (during a code-injection attack the attack code is effectively 
randomized and we wanted to know how quickly and how certainly such randomized 
code would fail). 
 
The project conducted a detailed analysis of RISES’ safety—that is, how likely random 
bytes of code are to execute at all (or do damage). Experiments and developed theoretical 
models were developed, both for IA32 and Power PC architectures, to estimate the 
probabilities of various events (e.g., outright crash, infinite loop, escape into valid code, 
etc.). RISE succeeds in converting a very high percentage of malicious code injection 
attacks into no more than detectable denials of service. The results showed that for the 
IA32 architecture, short sequences of random bytes have a surprisingly high probability 
of either escaping or entering an infinite loop. The probabilities are much lower for the 
Power PC architecture. 
 
Note: This project was also supported by NSF grant CCR-0311686 and by a DARPA 
grant. This work is documented in [3, 14, 4]. 
 
7. Conclusion 
 
Distributed and robust computing will play a central role in almost any future networked 
computer system, and the project contributed a principled approach to many of the 
important issues. In particular, the project is relevant to the goal of deploying active 
agents across the Internet, both in terms of how to ensure that the agents and the 
environment they live in are safe and in terms of turning active code loose in an 
environment with no central control. The projects described above contributed several 
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new and important approaches, usable and widely distributed implementations, important 
theoretical results, and perhaps most importantly, had a significant impact on how people 
think about and approach the design of distributed, robust software. 
 
A secondary benefit of this research was that it extended the bridge between biology and 
computation. Most research involving biology and computation falls into a few well 
studied areas, including neural processing, vision and speech, some aspects of robotics, 
computational biology, genetic algorithms, and DNA computation. Although the work 
reported here has much in common with such efforts seeking to apply knowledge and 
inspiration from biological systems to computer science, it emphasized concrete 
implementations in real-time systems that address real computing problems. 
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